Molecular spintronics under electrochemical control
IMDEA Nanociencia is looking for a PhD Student to work on Molecular Electronics. The study of the electrical properties of individual molecular entities is at the core of future technologies such as Spintronics, 2D Materials or Bioelectronics. In this project, the student will work in a combination of techniques to move a step forward in the comprehension of these technologies.
On the one side, a homemade Scanning Tunnelling Microscopy with the recently equipped electrochemical control and thermal monitoring has allowed gain rich knowledge on the importance of molecular bond, molecular conformation, add-atoms, and molecular bridge among others factors on the electrical characteristics[1,2,3,4]. The student will explore the spin- dependent transport in single molecules, working with magnetic polarized electrodes.
On the other side, E-Beam nanofabrication permits the creation of single crystal nanoparticles with ohmic contact with the silicon highly doped wafers. This test bed for Molecular Electronics has been used to demonstrate a Molecular Rectifier operating at GHz, the importance of cooperative effects or single nanoparticle electrochemical recognition[5,6].
In this project, the student will benefit from both approaches to explore (bio-) molecular switches, spin transport in molecular junctions and performance of thin-film devices.
An ideal candidate would have a background in Chemistry, Physics or Engineering and hold a MSC degree in Nanotechnology (or equivalent). However, a strongly motivated candidate who lacks any of the above will also be given a serious consideration. Moreover, it is expected that the successful candidate will be independent, creative, curiosity-driven, motivated to explore solutions to difficult scientific problems, and have strong work ethics. Good academic credentials will be a plus.
Contact researchers:
Dr. M. Teresa González (91 299 87 53):
Dr. Jorge Trasobares (91 299 87 70):
[1] Leary, E.; Limburg, B.; Alanazy, A.; Sangtarash, S.; Grace, I.; Swada, K.; Esdaile, L. J.; Noori, M.; González, M. T.; Rubio-Bollinger, G.; Sadeghi, H.; Hodgson, A.; Agralt, N.; Higgins, S. J.; Lambert, C. J.; Anderson, H. L.; Nichols, R. J. Bias-Driven Conductance Increase with Length in Porphyrin Tapes. J. Am. Chem. Soc. 2018, 140 (40), 12877.
[2] Miguel, D.; Álvarez de Cienfuegos, L.; Martín-Lasanta, A.; Morcillo, S. P.; Zotti, L. A.; Leary, E.; Bürkle, M.; Asai, Y.; Jurado, R.; Cárdenas, D. J.; Rubio-Bollinger, G.; Agraït, N.; Cuerva, J. M.; González, M. T. Toward Multiple Conductance Pathways with Heterocycle-Based Oligo(phenyleneethynylene) Derivatives. J. Am. Chem. Soc. 2015, jacs. 5b05637.
[3] Leary, E.; La Rosa, A.; González, M. T.; Rubio-Bollinger, G.; Agraït, N.; Martín, N. Incorporating single molecules into electrical circuits. The role of the chemical anchoring group. Chem. Soc. Rev. 2015, 44 (4), 920.
[4] González, M. T.; Díaz, A.; Leary, E.; García, R.; Herranz, M. Á.; Rubio-Bollinger, G.; Martín, N.; Agraït, N. Stability of Single- and Few-Molecule Junctions of Conjugated Diamines. J. Am. Chem. Soc. 2013, 135 (14), 5420.
[5] Trasobares, J.; Vuillaume, D.; Theron, D.; Clément, N. A 17 GHz molecular rectifier. Nature Communications. 2016, 7, pp. 12850 – 12856.
[6] Chennit, K.; Trasobares, J.; Anne, A.; Cambril, E.; Chovin, A.; Clément, N.; Demaille, C. Electrochemical
imaging of dense molecular nanoarrays. Analytical Chemistry. 2017, 89-20, 11061-11069.