Towards the understanding of dynamical evolution and geometric phases in periodically driven qubits using a Multiple Scales Analysis

Cristian Tabares López. Álvaro Gómez León (Tutor). Instituto de Ciencia de Materiales de Madrid

La Mecánica Cuántica es la rama de la Física utilizada para describir la naturaleza a escalas atómicas y subatómicas. Nació a principios del siglo XX y terminó llevando a la llamada primera revolución cuántica, que trajo consigo algunos de los avances tecnológicos más significativos de los últimos años, tales como los semiconductores, el láser o el GPS.

Por otro lado, los avances experimentales recientes permiten manipular a voluntad estados cuánticos individuales en el laboratorio. Este nivel de refinamiento abre las puertas a la exploración algunas de las propiedades más sorprendentes del mundo cuántico, como la superposición (que un solo estado cuántico pueda ser una “mezcla” de estados clásicos) o el entrelazamiento (resultado de describir sistemas cuánticos aparentemente distintos como uno solo, estableciendo correlaciones entre sus partes que no existirían de otra manera). Con este nuevo abanico de técnicas se ha logrado comprobar las predicciones de la teoría cuántica hasta un nivel sin precedentes, y se espera que su constante desarrollo nos termine llevando a una segunda revolución cuántica, donde estas propiedades se utilicen para resolver problemas tecnológicos reales.

En este contexto resulta fundamental aprender a controlar y manipular estados cuánticos y, para ello, una de las herramientas más habituales consiste en el uso de campos electromagnéticos periódicos (como luz visible o microondas). Nuestro trabajo pretende entender mejor la interacción entre uno de los sistemas cuánticos más sencillos que existen, el qubit (que sólo tiene dos posibles estados y es base, por ejemplo, de los ordenadores cuánticos) y la radiación. Para ello, hemos aplicado un enfoque analítico, en el que (por medio de distintas técnicas matemáticas) obtenemos una serie de fórmulas que aproximan bien el comportamiento del qubit cuando se lo somete a distintos tipos de radiación. A su vez, la forma misma de obtener estas expresiones proporciona también información relevante sobre el sistema.

Por otro lado, los conceptos cuánticos son frágiles y, al implementarlos en un laboratorio, es fácil que aparezcan errores que estropeen los resultados. Es por ello que resulta de especial interés buscar propiedades robustas, como aquellas que dependen de aspectos “geométricos”, con el fin de lograr un control más sólido y estable. Nuestro trabajo también muestra cómo es posible aplicar las fórmulas obtenidas para calcular con considerable éxito una de estas magnitudes, la fase geométrica, abriendo la puerta a futuras aplicaciones experimentales de nuestros resultados.

(Resumen completo:Cristian Tabares)